Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Antimicrob Chemother ; 78(7): 1757-1768, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-20232644

ABSTRACT

OBJECTIVES: To uncover clinical epidemiology, microbiological characteristics and outcome determinants of hospital-acquired bloodstream infections (HA-BSIs) in Turkish ICU patients. METHODS: The EUROBACT II was a prospective observational multicontinental cohort study. We performed a subanalysis of patients from 24 Turkish ICUs included in this study. Risk factors for mortality were identified using multivariable Cox frailty models. RESULTS: Of 547 patients, 58.7% were male with a median [IQR] age of 68 [55-78]. Most frequent sources of HA-BSIs were intravascular catheter [182, (33.3%)] and lower respiratory tract [175, (32.0%)]. Among isolated pathogens (n = 599), 67.1% were Gram-negative, 21.5% Gram-positive and 11.2% due to fungi. Carbapenem resistance was present in 90.4% of Acinetobacter spp., 53.1% of Klebsiella spp. and 48.8% of Pseudomonas spp. In monobacterial Gram-negative HA-BSIs (n = 329), SOFA score (aHR 1.20, 95% CI 1.14-1.27), carbapenem resistance (aHR 2.46, 95% CI 1.58-3.84), previous myocardial infarction (aHR 1.86, 95% CI 1.12-3.08), COVID-19 admission diagnosis (aHR 2.95, 95% CI 1.25-6.95) and not achieving source control (aHR 2.02, 95% CI 1.15-3.54) were associated with mortality. However, availability of clinical pharmacists (aHR 0.23, 95% CI 0.06-0.90) and source control (aHR 0.46, 95% CI 0.28-0.77) were associated with survival. In monobacterial Gram-positive HA-BSIs (n = 93), SOFA score (aHR 1.29, 95% CI 1.17-1.43) and age (aHR 1.05, 95% CI 1.03-1.08) were associated with mortality, whereas source control (aHR 0.41, 95% CI 0.20-0.87) was associated with survival. CONCLUSIONS: Considering high antimicrobial resistance rate, importance of source control and availability of clinical pharmacists, a multifaceted management programme should be adopted in Turkish ICUs.


Subject(s)
Bacteremia , COVID-19 , Cross Infection , Sepsis , Humans , Male , Female , Prospective Studies , Cohort Studies , Cross Infection/microbiology , Intensive Care Units , Risk Factors , Carbapenems , Hospitals , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology
2.
JAMA Netw Open ; 6(5): e2313354, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2312652

ABSTRACT

Importance: The prevalence of urinary tract infection (UTI), bacteremia, and bacterial meningitis in febrile infants with SARS-CoV-2 is largely unknown. Knowledge of the prevalence of these bacterial infections among febrile infants with SARS-CoV-2 can inform clinical decision-making. Objective: To describe the prevalence of UTI, bacteremia, and bacterial meningitis among febrile infants aged 8 to 60 days with SARS-CoV-2 vs without SARS-CoV-2. Design, Setting, and Participants: This multicenter cross-sectional study was conducted as part of a quality improvement initiative at 106 hospitals in the US and Canada. Participants included full-term, previously healthy, well-appearing infants aged 8 to 60 days without bronchiolitis and with a temperature of at least 38 °C who underwent SARS-CoV-2 testing in the emergency department or hospital between November 1, 2020, and October 31, 2022. Statistical analysis was performed from September 2022 to March 2023. Exposures: SARS-CoV-2 positivity and, for SARS-CoV-2-positive infants, the presence of normal vs abnormal inflammatory marker (IM) levels. Main Outcomes and Measures: Outcomes were ascertained by medical record review and included the prevalence of UTI, bacteremia without meningitis, and bacterial meningitis. The proportion of infants who were SARS-CoV-2 positive vs negative was calculated for each infection type, and stratified by age group and normal vs abnormal IMs. Results: Among 14 402 febrile infants with SARS-CoV-2 testing, 8413 (58.4%) were aged 29 to 60 days; 8143 (56.5%) were male; and 3753 (26.1%) tested positive. Compared with infants who tested negative, a lower proportion of infants who tested positive for SARS-CoV-2 had UTI (0.8% [95% CI, 0.5%-1.1%]) vs 7.6% [95% CI, 7.1%-8.1%]), bacteremia without meningitis (0.2% [95% CI, 0.1%-0.3%] vs 2.1% [95% CI, 1.8%-2.4%]), and bacterial meningitis (<0.1% [95% CI, 0%-0.2%] vs 0.5% [95% CI, 0.4%-0.6%]). Among infants aged 29 to 60 days who tested positive for SARS-CoV-2, 0.4% (95% CI, 0.2%-0.7%) had UTI, less than 0.1% (95% CI, 0%-0.2%) had bacteremia, and less than 0.1% (95% CI, 0%-0.1%) had meningitis. Among SARS-CoV-2-positive infants, a lower proportion of those with normal IMs had bacteremia and/or bacterial meningitis compared with those with abnormal IMs (<0.1% [0%-0.2%] vs 1.8% [0.6%-3.1%]). Conclusions and Relevance: The prevalence of UTI, bacteremia, and bacterial meningitis was lower for febrile infants who tested positive for SARS-CoV-2, particularly infants aged 29 to 60 days and those with normal IMs. These findings may help inform management of certain febrile infants who test positive for SARS-CoV-2.


Subject(s)
Bacteremia , COVID-19 , Meningitis, Bacterial , Urinary Tract Infections , Infant , Humans , Male , Female , SARS-CoV-2 , Prevalence , Cross-Sectional Studies , COVID-19 Testing , COVID-19/epidemiology , Bacteremia/epidemiology , Bacteremia/microbiology , Meningitis, Bacterial/epidemiology , Urinary Tract Infections/epidemiology , Urinary Tract Infections/microbiology
3.
BMC Infect Dis ; 23(1): 63, 2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2259545

ABSTRACT

BACKGROUND: There are limited data on the treatment of blood stream infections (BSIs) in patients receiving extracorporeal membrane oxygenation (ECMO). Current guidance recommends documenting clearance only in fungal and Gram-positive BSIs. This study investigates the incidence and clinical significance of blood stream infections with positive repeat cultures (BSIPRC) in ECMO as well as clinical factors that may predict positive repeat cultures. METHODS: All BSIs in patients receiving ECMO at Brooke Army Medical Center between September 2012 and October 2021 were included in this study. BSIPRC was defined as re-isolation of the same organism on repeat blood cultures following an initial positive blood culture. RESULTS: A total of 60 patients developed 87 BSI (38.5 BSI per 1000 ECMO days). Of the 80 (92%) BSIs who had repeat blood cultures drawn, patients had BSIPRC in 35 (44%) of cases. Fever, leukocytosis, and vasopressor requirement on day of repeat culture were not associated with persistent positivity. There was no difference in survival to discharge for patients with BSIPRC as compared to single day BSI (58% vs. 63%, p = 0.78). 19% of patients with Gram-negative bacteremia had BSIPRC, and gram-negative bacteremia in general was associated with an 83% morality. CONCLUSIONS: There were no clinical findings that differentiated patients with BSIPRC from those who had a single day of positivity. BSI was associated with high mortality in patients with Gram-negative bacteremia. Given high incidence of positive repeat cultures being seen in Gram-negative BSIs, repeat blood cultures have utility for all BSIs in patients receiving ECMO.


Subject(s)
Bacteremia , Extracorporeal Membrane Oxygenation , Sepsis , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Cohort Studies , Retrospective Studies , Sepsis/complications , Bacteremia/microbiology
4.
J Infect Chemother ; 29(4): 422-426, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2233651

ABSTRACT

OBJECTIVES: We investigated the occurrence of non-respiratory bacterial and fungal secondary infections, causative organisms, impact on clinical outcomes, and association between the secondary pathogens and mortality in hospitalized patients with coronavirus disease 2019 (COVID-19). METHODS: This was a retrospective cohort study that included data from inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021). We obtained demographic, epidemiological, and microbiological data throughout the course of hospitalization and analyzed the cases of COVID-19 complicated by non-respiratory bacterial infections. RESULTS: Of the 1914 patients included, non-respiratory bacterial infections with COVID-19 were diagnosed in 81 patients (4.2%). Of these, 59 (3.1%) were secondary infections. Bacteremia was the most frequent bacterial infection, occurring in 33 cases (55.9%), followed by urinary tract infections in 16 cases (27.1%). Staphylococcus epidermidis was the most common causative organism of bacteremia. Patients with COVID-19 with non-respiratory secondary bacterial infections had significantly higher mortality, and a multivariate logistic regression analysis demonstrated that those with bacteremia (aOdds Ratio = 15.3 [5.97-39.1]) were at higher risk of death. Multivariate logistic regression analysis showed that age, male sex, use of steroids to treat COVID-19, and intensive care unit admission increased the risk for nosocomial bacteremia. CONCLUSIONS: Secondary bacteremia is an important complication that may lead to poor prognosis in cases with COVID-19. An appropriate medical management strategy must be established, especially for patients with concomitant predisposing factors.


Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Coinfection , Mycoses , Humans , Male , COVID-19/complications , COVID-19/epidemiology , Retrospective Studies , Coinfection/epidemiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Bacterial Infections/microbiology , Mycoses/microbiology , COVID-19 Testing
5.
Med Clin (Barc) ; 160(11): 495-498, 2023 06 09.
Article in English, Spanish | MEDLINE | ID: covidwho-2211136

ABSTRACT

OBJECTIVES: The aim was to compare the incidence of Staphylococcus aureus bacteremia in COVID-19 and non-COVID-19 adult patients during the pandemic period versus the previous two years. Also, we described the characteristics of both cohorts of patients in pandemic period to find differences. MATERIAL AND METHODS: Retrospective study in our tertiary-care centre reviewing S. aureus bacteremia episodes in COVID-19 and non-COVID-19 patients through clinical records and the Microbiology Department database. RESULTS: In 2018 and 2019, the incidence of S. aureus bacteremia episodes was 1.95 and 1.63 per 1000 admissions respectively. In the pandemic period, global incidence was 1.96 episodes per 1000 non-COVID-19 admissions and 10.59 episodes per 1000 COVID-19 admissions. A total of 241 bacteremia was registered during this pandemic period in 74 COVID-19 patients and in 167 non-COVID-19 patients. Methicillin resistance was detected in 32.4% and 13.8% of isolates from COVID-19 and non-COVID-19 patients respectively. In COVID-19 patients, mortality rates were significantly higher. CONCLUSIONS: We showed a significantly high rates of S. aureus bacteremia incidence in COVID-19 patients and higher methicillin resistance and 15-day mortality rates than in non-COVID-19 patients.


Subject(s)
Bacteremia , COVID-19 , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Adult , Humans , Staphylococcus aureus , Retrospective Studies , COVID-19/epidemiology , SARS-CoV-2 , Staphylococcal Infections/microbiology , Bacteremia/epidemiology , Bacteremia/microbiology
6.
Georgian Med News ; (328-329): 75-80, 2022.
Article in English | MEDLINE | ID: covidwho-2092155

ABSTRACT

Fifty blood samples were collected from patients who were confirmed to have COVID-19 by conducting a diagnostic test using real-time RT-PCR for the direct qualitative detection of the Coronavirus when the patients attended the private clinics at Al Rabeea Private Hospital in Mosul for the period from the beginning of March to the end of May 2021. The patients' ages range from17-59 years, with 23 males (46%), and 27 females (54%). The blood samples were taken before giving any type of treatment for blood culture, biochemical, and immunological tests. Bacteremia is investigated to determine the types of bacteria that cause bacteremia, biochemical tests such as D-dimer, S. Ferritin, CRP, Protein S, Protein C, FBS, LDH, Blood Urea, Serum Creatinine, SGOT & SGPT, and immunological tests such as blood group, IgG & IgM, IL-1B, IL-6, TNF-α alpha, ASOT, ESR, C3, and C4. In this study, the relationship between bacteremia and the types of biomarkers used is determined in addition to the relationship of bacteremia to the patient's age, sex, SPO2, and body temperature. More accurate comparison is also accomplished in cases of bacteremia by adopting the types of bacteria isolated if they were gram-positive or gram-negative. The results of this study show an increase in the severity of COVID-19 disease caused by a secondary bacterial infection. This is determined by measuring several biomarkers used in this study and also by performing bacteriological tests to document bacteremia by blood culture. Also, these results can be adopted in future studies concentrating on the molecular level to determine the genetic changes associated with viral infection with or without secondary bacterial infection to develop an effective treatment protocol.


Subject(s)
Bacteremia , COVID-19 , Male , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Bacteremia/microbiology , Biomarkers , Treatment Outcome
7.
West J Emerg Med ; 23(5): 754-759, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-2056168

ABSTRACT

INTRODUCTION: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the coronavirus disease 2019 (COVID-19) pandemic that drastically impacted the United States. The evidence was not clear on how SARS-CoV-2 infection impacted children, given the high prevalence of SAR-CoV-2 infection. Febrile infants less than 60 days old are an ongoing challenge to risk-stratify for serious bacterial infection (SBI), including urinary tract infection (UTI), bacteremia, and meningitis. We hypothesized there would be a lower rate of SBI in SARS-CoV-2 positive febrile infants compared to those SARS-CoV-2 negative. METHODS: This was a retrospective chart review with a nested, age-matched, case-control study performed from March 2020-June 2021. Infants less than 60 days old presenting with fever were assigned groups based on SARS-CoV-2 infection. Blood, urine, and cerebrospinal fluid cultures were used as the gold standard to diagnose SBI. We compared overall rate of SBI as well as individual rates of SBI between each group. We performed a subgroup analysis evaluating the age group 29-60 days old. RESULTS: A total of 164 subjects met criteria for analysis: 30 COVID-19 positive and 134 COVID-19 negative subjects. Rate of SBI was 17.9% (95% confidence interval [CI]: 11.8-25.5%) in the COVID-19 negative group compared to 0% (95% CI: 0.0%-11.1%) in the COVID-19 group, which demonstrated statistical significance (p = 0.008). In the age-matched data, we found statistical significance for any SBI (p = <0.001). For individual rates of SBI, we found statistical significance for UTI (p = <0.001) and bacteremia (p = <0.001). The 29-60 days-old subgroup analysis did not achieve statistical significance (p = 0.11). CONCLUSION: This study demonstrated the utility of including SARS-CoV-2 infection as part of the risk stratification of febrile infants less than 60 days old. While overall there is a low incidence of bacteremia and meningitis in this age group, these results can contribute to existing literature and potentially help decrease invasive testing and exposure to broad-spectrum antibiotics.


Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Meningitis , Urinary Tract Infections , Anti-Bacterial Agents , Bacteremia/epidemiology , Bacteremia/microbiology , Bacterial Infections/diagnosis , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Case-Control Studies , Child , Fever/diagnosis , Humans , Infant , Infant, Newborn , Meningitis/complications , Meningitis/microbiology , Retrospective Studies , SARS-CoV-2 , Urinary Tract Infections/diagnosis , Urinary Tract Infections/epidemiology
8.
Curr Opin Infect Dis ; 35(6): 605-613, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2051764

ABSTRACT

PURPOSE OF REVIEW: SARS-CoV-2 deeply modified the risk of bacterial infection, bacterial resistance, and antibiotic strategies. This review summarized what we have learned. RECENT FINDINGS: During the COVID-19 pandemic, we observed an increase in healthcare-acquired infection and multidrug-resistant organism-related infection, triggered by several factors: structural factors, such as increased workload and ongoing outbreaks, underlying illnesses, invasive procedures, and treatment-induced immunosuppression. The two most frequently healthcare-acquired infections described in patients hospitalized with COVID-19 were bloodstream infection, related or not to catheters, health-acquired pneumonia (in ventilated or nonventilated patients). The most frequent species involved in bacteremia were Gram-positive cocci and Gram-negative bacilli in health-acquired pneumonia. The rate of Gram-negative bacilli is particularly high in late-onset ventilator-associated pneumonia, and the specific risk of Pseudomonas aeruginosa- related pneumonia increased when the duration of ventilation was longer than 7 days. A specificity that remains unexplained so far is the increase in enterococci bacteremia. SUMMARY: The choice of empiric antibiotimicrobials depends on several factors such as the site of the infection, time of onset and previous length of stay, previous antibiotic therapy, and known multidrug-resistant organism colonization. Pharmacokinetics of antimicrobials could be markedly altered during SARS-CoV-2 acute respiratory failure, which should encourage to perform therapeutic drug monitoring.


Subject(s)
Bacteremia , COVID-19 Drug Treatment , Cross Infection , Gram-Negative Bacterial Infections , Humans , Gram-Negative Bacterial Infections/drug therapy , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/microbiology , Pandemics , SARS-CoV-2 , Gram-Negative Bacteria , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Risk Assessment
9.
Small ; 18(40): e2203746, 2022 10.
Article in English | MEDLINE | ID: covidwho-2013794

ABSTRACT

Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia  coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment.


Subject(s)
Bacteremia , COVID-19 Drug Treatment , Escherichia coli Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/metabolism , Cytokines/metabolism , Endotoxins/metabolism , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Glycophorins/metabolism , Homeostasis , Humans , Microbial Sensitivity Tests , Opsonin Proteins/metabolism , Rats , Receptors, Complement/metabolism , Rodentia/metabolism , SARS-CoV-2 , Viral Envelope Proteins/metabolism , beta-Lactamases/metabolism
10.
BMC Infect Dis ; 22(1): 631, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1938294

ABSTRACT

OBJECTIVES: Staphylococcus aureus bacteremia (SAB) is one of the most frequent bloodstream infections. High mortality of SAB can be significantly reduced by regular infectious disease (ID) consultations and appropriate clinical management. Because the pandemic of coronavirus disease 2019 (COVID-19) has had a negative impact on hospital ID service, it can be assumed that it has also led to decreased quality of care for SAB patients. METHODS: This study enrolled all (n = 68) patients with proven SAB who were hospitalized in Military University Hospital, Prague, in 2019 and 2020 and the quality of care indicators for SAB patients were compared. RESULTS: A total of 33 and 35 patients with SAB were hospitalized in our hospital in 2019 and 2020, respectively. The significant difference between the pandemic year 2020 and year 2019 was in ID consultations performed (74% vs. 100%; p = 0.002) and fulfilment of all quality of care indicators (66% vs. 93%; p = 0.012). Next, higher in-hospital mortality was observed in 2020 than in 2019 (6% vs. 23%; p = 0.085). There was no significant difference in the percentages of patients with performed echocardiographic examinations (66% vs. 83%; p = 0.156) and collected follow-up blood cultures (85% vs. 94%; p = 0.428). In addition, there was no difference between the two years in the adequate antibiotic therapy, sources, and bacterial origin of SAB. CONCLUSIONS: The quality of care of SAB patients significantly decreased during the COVID-19 pandemic in our institution.


Subject(s)
Bacteremia , COVID-19 , Staphylococcal Infections , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Humans , Pandemics , Retrospective Studies , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus , Treatment Outcome
11.
Infect Disord Drug Targets ; 22(5): 77-84, 2022.
Article in English | MEDLINE | ID: covidwho-1809166

ABSTRACT

BACKGROUND: The higher mortality rate in COVID-19 patients is still a concern. Though some studies mention that elderly patients with co-morbidities are at higher risk of mortality, some others report uneventful outcomes in young patients even without co-morbidities. Secondary bacterial and fungal infections, especially with nosocomial pathogens are known to be associated with worse outcome in the ongoing pandemic as well as in the previous viral outbreaks. In such a scenario, the outcome of hospitalized COVID-19 patients can be improved by timely identification of secondary infections using appropriate biomarkers and by following appropriate infection control measures to prevent the spread of nosocomial pathogens. OBJECTIVE: The study aims to find out the prevalence of bloodstream infections (BSI) among hospitalized COVID-19 patients and to analyze their laboratory markers and outcome by comparing them with those without BSI. METHODS: In this descriptive cross-sectional study, the prevalence of secondary BSI was determined among the hospitalized COVID-19 patients by including 388 blood culture bottles collected from 293 patients, which were received in the microbiology lab within the study period. RESULTS: The overall prevalence of BSI in COVID-19 patients was 39.5% (116/293), out of which 35.5% (104/293) infections were bacterial, and 4.1% (12/293) were fungal, while 8.9% (26/293) patients grew contaminants, and 51.5% (151/293) were sterile. Common causative agents of secondary BSI were found to be MDR Klebsiella pneumoniae (10.9%) and Acinetobacter baumannii (8.8%) followed by Candida species (4.1%). Patients with co-morbidities like diabetes, hypertension and COPD were at higher risk of developing BSI with significantly higher levels of sepsis markers such as Creactive protein (CRP), procalcitonin, ferritin and Interleukin-6 (IL-6). The mortality rate was significantly higher (60.2%) in patients with BSI compared to the group of patients without BSI. CONCLUSION: Our findings suggest the necessity of early diagnosis of the secondary infections using appropriate biomarkers and following proper infection control measures to prevent the spread of the nosocomial infections and improve the outcome of hospitalized COVID-19 patients.


Subject(s)
Bacteremia , COVID-19 , Coinfection , Cross Infection , Sepsis , Aged , Anti-Bacterial Agents/therapeutic use , Bacteremia/epidemiology , Bacteremia/microbiology , Bacteria , Biomarkers , COVID-19/epidemiology , Coinfection/drug therapy , Cross Infection/epidemiology , Cross Infection/microbiology , Cross-Sectional Studies , Humans , Prevalence , Retrospective Studies , Risk Factors
12.
BMC Infect Dis ; 22(1): 173, 2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1699389

ABSTRACT

BACKGROUND: Prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infection with high mortality has attached physicians' attention. High visceral adipose tissue (VAT) and high subcutaneous adipose tissue (SAT) were confirmed by previous studies that were closely related to increased pneumonia severity, more complications, and higher mortality in COVID-19. Thus, we speculate that CT-quantified body composition may also be connected to all-cause mortality and bacterial clearance in patients with CRKP bloodstream infection (BSI). METHODS: We investigated the associations of CT-quantified body composition with the mortality of CRKP bloodstream infectious patients. All CT images were obtained at the level of the L3/4 spinal level. The prognostic value of the body composition was analyzed using the Cox regression model, and precise clinical nomograms were established. RESULTS: 72 eligible patients both suffered from CRKP bloodstream infection and performed abdominopelvic CT were included. Factors associated with 30-day all-in hospital mortality included total adipose tissue (TAT) [adjusted hazard ratio (HR) = 1.028, 95% confidence interval (CI), 1.003-1.053; P = 0.025], age [HR = 1.030, 95% CI, 1.000-1.061; P = 0.047] and SOFA scores [HR = 1.138, 95% CI 1.049-1.263; P = 0.002]. Compared with low-VAT, patients with high-VAT show a strikingly poor prognosis in both 30-day all-cause mortality (P = 0.0108, Fig. 2A) and 30-day CRKP BSI mortality (P = 0.0049, Fig. 2C). The results of TAT were similar to VAT. CONCLUSIONS: Our study suggested that CT-derived body composition could be a credible and effective alternative to assess the prognosis of patients with BSI owing to CRKP. CT-quantified TAT, age, and SOFA scores were independently associated with 30-day all-cause mortality in these severe infectious patients, while skeletal muscle did not have obvious statistical significance.


Subject(s)
Bacteremia , COVID-19 , Klebsiella Infections , Sepsis , Adipose Tissue , Anti-Bacterial Agents/therapeutic use , Bacteremia/microbiology , Carbapenems , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sepsis/drug therapy
13.
Eur J Clin Microbiol Infect Dis ; 41(1): 53-62, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1616163

ABSTRACT

There is relatively little contemporary information regarding clinical characteristics of patients with Pseudomonas aeruginosa bacteremia (PAB) in the community hospital setting. This was a retrospective, observational cohort study examining the clinical characteristics of patients with PAB across several community hospitals in the USA with a focus on the appropriateness of initial empirical therapy and impact on patient outcomes. Cases of PAB occurring between 2016 and 2019 were pulled from 8 community medical centers. Patients were classified as having either positive or negative outcome at hospital discharge. Several variables including receipt of active empiric therapy (AET) and the time to receiving AET were collected. Variables with a p value of < 0.05 in univariate analyses were included in a multivariable logistic regression model. Two hundred and eleven episodes of PAB were included in the analysis. AET was given to 81.5% of patients and there was no difference in regard to outcome (p = 0.62). There was no difference in the median time to AET in patients with a positive or negative outcome (p = 0.53). After controlling for other variables, age, Pitt bacteremia score ≥ 4, and septic shock were independently associated with a negative outcome. A high proportion of patients received timely, active antimicrobial therapy for PAB and time to AET did not have a significant impact on patient outcome.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Aged , Bacteremia/microbiology , Female , Hospitals, Community/statistics & numerical data , Humans , Male , Middle Aged , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/physiology , Retrospective Studies
14.
Ann Med ; 53(1): 1779-1786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1462157

ABSTRACT

BACKGROUND: An unexpected high prevalence of enterococcal bloodstream infection (BSI) has been observed in critically ill patients with COVID-19 in the intensive care unit (ICU). MATERIALS AND METHODS: The primary objective was to describe the characteristics of ICU-acquired enterococcal BSI in critically ill patients with COVID-19. A secondary objective was to exploratorily assess the predictors of 30-day mortality in critically ill COVID-19 patients with ICU-acquired enterococcal BSI. RESULTS: During the study period, 223 patients with COVID-19 were admitted to COVID-19-dedicated ICUs in our centre. Overall, 51 episodes of enterococcal BSI, occurring in 43 patients, were registered. 29 (56.9%) and 22 (43.1%) BSI were caused by Enterococcus faecalis and Enterococcus faecium, respectively. The cumulative incidence of ICU-acquired enterococcal BSI was of 229 episodes per 1000 ICU admissions (95% mid-p confidence interval [CI] 172-298). Most patients received an empirical therapy with at least one agent showing in vitro activity against the blood isolate (38/43, 88%). The crude 30-day mortality was 42% (18/43) and 57% (4/7) in the entire series and in patients with vancomycin-resistant E. faecium BSI, respectively. The sequential organ failure assessment (SOFA) score showed an independent association with increased mortality (odds ratio 1.32 per one-point increase, with 95% confidence interval 1.04-1.66, p = .021). CONCLUSIONS: The cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19. Our results suggest a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.KEY MESSAGESThe cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19.The crude 30-day mortality of enterococcal BSI in critically ill patients with COVID-19 may be higher than 40%.There could be a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.


Subject(s)
Bacteremia/epidemiology , COVID-19/epidemiology , Cross Infection/epidemiology , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections/epidemiology , Mortality , Vancomycin-Resistant Enterococci , Aged , Bacteremia/microbiology , Critical Illness , Female , Gram-Positive Bacterial Infections/microbiology , Humans , Intensive Care Units , Male , Microbial Sensitivity Tests , Middle Aged , Organ Dysfunction Scores , Retrospective Studies , SARS-CoV-2
15.
Infect Control Hosp Epidemiol ; 43(10): 1416-1423, 2022 10.
Article in English | MEDLINE | ID: covidwho-1428668

ABSTRACT

OBJECTIVE: We compared the rates of hospital-onset secondary bacterial infections in patients with coronavirus disease 2019 (COVID-19) with rates in patients with influenza and controls, and we investigated reports of increased incidence of Enterococcus infections in patients with COVID-19. DESIGN: Retrospective cohort study. SETTING: An academic quaternary-care hospital in San Francisco, California. PATIENTS: Patients admitted between October 1, 2019, and October 1, 2020, with a positive SARS-CoV-2 PCR (N = 314) or influenza PCR (N = 82) within 2 weeks of admission were compared with inpatients without positive SARS-CoV-2 or influenza tests during the study period (N = 14,332). METHODS: National Healthcare Safety Network definitions were used to identify infection-related ventilator-associated complications (IVACs), probable ventilator-associated pneumonia (PVAP), bloodstream infections (BSIs), and catheter-associated urinary tract infections (CAUTIs). A multiple logistic regression model was used to control for likely confounders. RESULTS: COVID-19 patients had significantly higher rates of IVAC and PVAP compared to controls, with adjusted odds ratios of 4.7 (95% confidence interval [CI], 1.7-13.9) and 10.4 (95 % CI, 2.1-52.1), respectively. COVID-19 patients had higher incidence of BSI due to Enterococcus but not BSI generally, and whole-genome sequencing of Enterococcus isolates demonstrated that nosocomial transmission did not explain the increased rate. Subanalyses of patients admitted to the intensive care unit and patients who required mechanical ventilation revealed similar findings. CONCLUSIONS: COVID-19 is associated with an increased risk of IVAC, PVAP, and Enterococcus BSI compared with hospitalized controls, which is not fully explained by factors such as immunosuppressive treatments and duration of mechanical ventilation. The mechanism underlying increased rates of Enterococcus BSI in COVID-19 patients requires further investigation.


Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Coinfection , Cross Infection , Influenza, Human , Humans , COVID-19/epidemiology , SARS-CoV-2 , Bacteremia/microbiology , Influenza, Human/complications , Retrospective Studies , Cross Infection/microbiology , Enterococcus
16.
Diagn Microbiol Infect Dis ; 101(3): 115416, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1356194

ABSTRACT

BACKGROUND: COVID19 is the novel respiratory illness caused by SARS-CoV-2. The presence of other potentially pathogenic microorganisms could worsen the prognosis of these patients. AIM: The study aims to describe coinfections in COVID-19 patients and contrast it between standard ward and critical care patients at Hospital Central de la Defensa Gómez Ulla (HCDGU). METHODS: A retrospective study was carried out of patients with COVID-19 confirmed with RTPCR admitted to the HCDGU from March 5, 2020 to May 7 of 2020. FINDINGS: Of a total of 703 patients with COVID-19, 75(10.7%) had other microbiologically confirmed infections: 9% (58/648) in standard ward patients and 31.5%(17/54) in critical care patients. In total 86 samples of the 75 patients presented some microorganism; clinically relevant bacteraemias, 50%, respiratory cultures, 32.6% and pneumococcal positive antigens, 17.4%. CONCLUSIONS: We found a low frequency of microorganism coinfection in COVID-19 patients, however in critical care these coinfections increased considerably.


Subject(s)
Bacterial Infections/complications , COVID-19/complications , Coinfection/diagnosis , Inpatients , SARS-CoV-2 , Aged , Bacteremia/complications , Bacteremia/microbiology , Bacteria/classification , Bacteria/isolation & purification , Female , Humans , Male , Middle Aged , Retrospective Studies
17.
Anaerobe ; 71: 102420, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1321979

ABSTRACT

A 42-year-old man was referred to the Department of Orthopedic Surgery with pain over his right greater trochanter and signs of systemic infection. CT showed an enhanced mass in his gluteus maximus as well as gas in the biceps femoris over the underlying hip joint. Tissue biopsy yielded Fusobacterium nucleatum and Actinomyces turicensis. The patient was successfully treated for 6 weeks with amoxicillin/clavulanic acid 875mg/125mg and metronidazole 500mg.


Subject(s)
Actinomycetaceae/isolation & purification , Actinomycetales Infections/microbiology , Bacteremia/microbiology , COVID-19/immunology , Fusobacterium Infections/microbiology , Fusobacterium nucleatum/isolation & purification , Hip/microbiology , Abscess/drug therapy , Abscess/microbiology , Actinomycetaceae/drug effects , Actinomycetaceae/genetics , Actinomycetales Infections/drug therapy , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Fusobacterium Infections/drug therapy , Fusobacterium nucleatum/drug effects , Fusobacterium nucleatum/genetics , Humans , Immunocompromised Host , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
18.
Anaerobe ; 70: 102405, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1274154

ABSTRACT

The objectives of this study were to report 10 episodes of clinically significant bacteremia caused by species of the genus Anaerococcus isolated between July 2018 and February 2021 from the microbiology laboratory of a tertiary hospital in Granada (Spain). None of the isolates were identified by MALDI-TOF MS, and the definitive species identification was performed by 16 S rRNA gene sequencing. No reference spectra of the Anaerococcus species were present in the MALDI-TOF MS database. Eight isolates were finally identified as A. octavius, one isolate as A. tetradius and the other as A. urinomassiliensis. The majority of these infections were seen in patients aged >70 years. Risk factors for anaerobic infection were observed in eight patients, especially diabetes mellitus, surgery, and the presence of cancer. Fever was present in all patients. Three patients died, but only one death was attributed to the infection. Mean detection time of positive blood cultures was 47.5 h (range 24-92 h). Antimicrobial susceptibility to penicillin, amoxicillin-clavulanate, imipenem, moxifloxacin, clindamycin, metronidazole, and piperacillin-tazobactam was tested using the gradient diffusion technique and EUCAST breakpoints (except for moxifloxacin). No resistance to amoxicillin-clavulanate, metronidazole, imipenem, or piperacillin-tazobactam was detected; however, the majority of isolates were resistant to clindamycin. When MALDI-TOF MS does not provide a correct identification at genus or species level, as in some isolates of Gram-positive anaerobic cocci, microbiologists should perform an additional confirmatory technique, such as gene sequencing analysis, to obtain a definitive diagnosis.


Subject(s)
Bacteremia/diagnosis , Bacteremia/microbiology , Firmicutes/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Bacteremia/drug therapy , Bacterial Typing Techniques , DNA, Bacterial/genetics , Female , Firmicutes/classification , Firmicutes/drug effects , Firmicutes/genetics , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/drug therapy , Humans , Male , Microbial Sensitivity Tests , Middle Aged , RNA, Ribosomal, 16S/genetics , Retrospective Studies , Spain
19.
BMC Infect Dis ; 21(1): 556, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1266473

ABSTRACT

BACKGROUND: We investigated for change in blood stream infections (BSI) with Enterobacterales, coagulase negative staphylococci (CoNS), Streptococcus pneumoniae, and Staphylococcus aureus during the first UK wave of SARS-CoV-2 across five London hospitals. METHODS: A retrospective multicentre ecological analysis was undertaken evaluating all blood cultures taken from adults from 01 April 2017 to 30 April 2020 across five acute hospitals in London. Linear trend analysis and ARIMA models allowing for seasonality were used to look for significant variation. RESULTS: One hundred nineteen thousand five hundred eighty-four blood cultures were included. At the height of the UK SARS-CoV-2 first wave in April 2020, Enterobacterales bacteraemias were at an historic low across two London trusts (63/3814, 1.65%), whilst all CoNS BSI were at an historic high (173/3814, 4.25%). This differed significantly for both Enterobacterales (p = 0.013), CoNS central line associated BSIs (CLABSI) (p < 0.01) and CoNS non-CLABSI (p < 0.01), when compared with prior periods, even allowing for seasonal variation. S. pneumoniae (p = 0.631) and S. aureus (p = 0.617) BSI did not vary significant throughout the study period. CONCLUSIONS: Significantly fewer than expected Enterobacterales BSI occurred during the UK peak of the COVID-19 pandemic; identifying potential causes, including potential unintended consequences of national self-isolation public health messaging, is essential. High rates of CoNS BSI, with evidence of increased CLABSI, but also likely contamination associated with increased use of personal protective equipment, may result in inappropriate antimicrobial use and indicates a clear area for intervention during further waves.


Subject(s)
Bacteremia , Bacteria , COVID-19 , Adult , Bacteremia/epidemiology , Bacteremia/microbiology , Bacteria/classification , Bacteria/isolation & purification , Humans , Pandemics , Retrospective Studies , Secondary Care , United Kingdom
20.
J Mycol Med ; 31(2): 101125, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1164245

ABSTRACT

Mucormycosis is an invasive fungal infection (IFI) due to several species of saprophytic fungi, occurring in patients with underlying co-morbidities (including organ transplantation). During the ongoing Coronavirus disease 2019 (COVID-19) pandemic, there have been increasing reports of bacterial and fungal co-infections occurring in COVID-19 patients, including COVID-19 associated pulmonary aspergillosis (CAPA). We describe a case of mucormycosis occurring after COVID-19, in an individual who received a recent heart transplant for severe heart failure. Two months after heart transplant, our patient developed upper respiratory and systemic symptoms and was diagnosed with COVID-19. He was managed with convalescent plasma therapy and supportive care. Approximately three months after COVID-19 diagnosis, he developed cutaneous mucormycosis at an old intravascular device site. He underwent extensive surgical interventions, combined with broad-spectrum antifungal therapy. Despite the aggressive therapeutic measures, he died after a prolonged hospital stay. In this case report, we also review the prior well-reported cases of mucormycosis occurring in COVID-19 patients and discuss potential mechanisms by which COVID-19 may predispose to IFIs. Similar to CAPA, mucormycosis with COVID-19 may need to be evaluated as an emerging disease association. Clinicians should be vigilant to evaluate for invasive fungal infections such as mucormycosis in patients with COVID-19 infection.


Subject(s)
COVID-19/complications , Heart Transplantation , Invasive Fungal Infections/complications , Mucormycosis/complications , Postoperative Complications/etiology , Rhizopus/isolation & purification , Aged , Anti-Infective Agents/therapeutic use , Bacteremia/complications , Bacteremia/drug therapy , Bacteremia/microbiology , COVID-19/therapy , Catheter-Related Infections/drug therapy , Catheter-Related Infections/etiology , Coinfection/drug therapy , Coinfection/microbiology , Combined Modality Therapy , Contraindications, Drug , Debridement , Dermatomycoses/drug therapy , Dermatomycoses/etiology , Disease Susceptibility , Fatal Outcome , Heart Failure/surgery , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Intra-Aortic Balloon Pumping/instrumentation , Invasive Fungal Infections/drug therapy , Male , Mucormycosis/drug therapy , Mucormycosis/microbiology , Negative-Pressure Wound Therapy , Opportunistic Infections/complications , Opportunistic Infections/drug therapy , Opportunistic Infections/microbiology , Postoperative Complications/drug therapy , Postoperative Complications/microbiology , Postoperative Complications/virology , Surgical Wound Infection/complications , Surgical Wound Infection/drug therapy , Surgical Wound Infection/microbiology , Surgical Wound Infection/surgery , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL